

A

Major Project Report on

DESIGN AND VERIFICATION OF VENDING

MACHINE USING VERILOG HDL

Submitted in partial fulfilment of the requirement for the award of degree of

BACHELOR OF TECHNOLOGY IN

ELECTRONICS AND COMMUNICATION ENGINEERING
SUBMITTED BY

OBINENI NITHIN 218R1A04N9

PAGIDIMARRI PRAVEEN 218R1A04O0

PANJALA KISHORE 218R1A04O1

PAPPU PURNACHANDU 218R1A04O2

Under the Esteemed Guidance of

Ms. L. LAVANYA

Assistant Professor

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CMR ENGINEERING COLLEGE
UGC AUTONOMOUS

(Approved by AICTE, UGC AUTONOMOUS, Accredited by NBA, NAAC)

 Kandlakoya(V), Medchal(M), Telangana.

(2024-2025)

I

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Approved by AICTE, UGC AUTONOMOUS, Accredited by NBA, NAAC)

Kandlakoya (V), Medchal , Telangana.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CERTIFICATE

This is to certify that Major-project work entitled “DESIGN AND VERIFICATION OF

VENDING MACHINE USING VERILOG HDL” is being submitted O. NITHIN bearing

Roll No 218R1A04N9, P. PRAVEEN bearing Roll No 218R1A04O0, P. KISHORE bearing

Roll No 218R1A04O1, P. PURNA CHANDU bearing Roll No 218R1A04O2 in B.Tech IV-II

semester, Electronics and Communication Engineering is a record Bonafide work carried out by then

during the academic year 2024-25. The results embodied in this report have not been submitted to any

other University for the award of any degree.

INTERNAL GUIDE HEAD OF THE DEPARTMENT

Ms. L. LAVANYA Dr. SUMAN MISHRA

EXTERNAL EXAMINER

II

ACKNOWLEDGEMENTS

We sincerely thank the management of our college CMR Engineering College for providing

required facilities during our project work. We derive great pleasure in expressing our sincere

gratitude to our Principal Dr. A. S. Reddy for his timely suggestions, which helped us to

complete the project work successfully. It is the very auspicious moment we would like to

express our gratitude to Dr. SUMAN MISHRA, Head of the Department, ECE for his

consistent encouragement during the progress of this project.

 We take it as a privilege to thank our project coordinator Dr. T. SATYANARAYANA,

Associate Professor, Department of ECE for the ideas that led to complete the project work and

we also thank him for his continuous guidance, support and unfailing patience, throughout the

course of this work. We sincerely thank our project internal guide Ms. L. LAVANYA, Assistant

Professor of ECE for guidance and encouragement in carrying out this project work.

III

DECLARATION

We hereby declare that the major project entitled “DESIGN AND VERIFICATION OF

VENDING MACHINE USING VERILOG HDL” is the work done by us in campus at CMR

ENGINEERING COLLEGE, Kandlakoya during the academic year 2024-2025 and is

submitted as Major project in partial fulfilment of the requirements for the award of degree

of BACHELOR OF TECHNOLOGY in ELECTRONICS AND COMMUNICATION

ENGINEERING FROM JAWAHARLAL NEHRU TECHNOLOGICAL

UNIVERSITY, HYDERABAD.

O. NITHIN (218R1A04N9)

P. PRAVEEN (218R1A04O0)

P. KISHORE (218R1A04O1)

P. PURNA CHANDU (218R1A04O2)

IV

ABSTRACT

The design, implementation, and verification of a vending machine using the Finite State

Machine (FSM) methodology in Verilog HDL. The FSM is used to manage the multiple

states of the vending machine, including “idle,” “accepting coins,” “dispensing item,” and

“returning change.” The implementation of the vending machine is done in Verilog HDL,

and the FSM is implemented as a state diagram. The design is then synthesized using the

Genus synthesis tool and implemented using the Encounter implementation tool. The Genus

tool uses advanced optimization techniques, such as timing-driven placement and clock tree

synthesis, to improve the design’s performance and area. The Encounter tool performs

physical design, including placement and routing, to meet the design’s timing, power, and

area constraints. To validate the design’s correctness and functionality, a test bench is created

to simulate the behavior of the vending machine. The simulation results are then used to

verify that the design meets the required specifications and that the FSM behaves as

expected. The proposed design is then can be implemented on a Field Programmable Gate

Array (FPGA) to demonstrate its effectiveness in a real-world scenario. The results of the

implementation are presented and analyzed to validate the design’s performance, power

consumption, and area. Overall, the vending machine using FSM in Verilog HDL,

implemented in Genus and Encounter, provides a reliable and efficient solution for users to

purchase items from the machine. The proposed design and implementation demonstrate the

feasibility and effectiveness of this approach, and the results show that the design meets the

required specifications and performs well in a real-world scenario.

V

CHAPTERS

CERTIFICATE

CONTENTS

PAGE

I

ACKNOWLEDGEMENT

DECLARATION BY THE CANDIDATE

ABSTRACT

CONTENTS

LIST OF FIGURES

CHAPTER-1

1. INTRODUCTION

1.1 INTRODUCTION

 II

III

IV

 VII

 01

1.2 OBJECTIVE 02

1.3 OVERVIEW OF THE PROJECT 03

CHAPTER-2

2. LITERAURE SURVEY

2.1 EXISTING SYSTEM 05

2.2 PROPOSED SYSTEM 08

2.3 INTRODUCTION TO VLSI 11

2.3.1 VLSI Technology
11

2.3.2 Why VLSI 13

2.3.3 Structured design 16

2.3.4 Applications of VLSI 17

2.3.5 ASIC 18

2.3.6 ASIC design flow 19

CHAPTER-3

3. SOFTWARE REQUIREMENTS

3.1 XILINX ISE 21

3.2 XILINX ISE 13.2i 21

3.2.1 SIMULATION 21

3.2.2 SYNTHESIS 21

3.2.3 PROCEDURE 22

3.3 PROCEDURE FOR SYNTHESIS 22

VI

3.4 VIVADO SOFTWARE 31

CHAPTER-4

WORKING OF THE PROJECT

4.1 WORKING OF THE PROJECT 43

CHAPTER-5

RESULTS

5.1 RESULTS OF THE PROJECT 47

5.2 APPLICATIONS 52

5.3 ADVANTAGES 52

CHAPTER-6

6. CONCLUSION & FUTURE SCOPE

CONCLUSION 53

FUTURE SCOPE 54

REFERENCES 56

APPENDIX 57

VII

LIST OF FIGURES

 PAGE

Figure 2.1 SIMPLIFIED VENDING MACHINE ARCHITECTURE 09

Figure 2.2 FLOW CHART 10

Figure 2.3 ASIC DESIGN 19

Figure 2.4 ASIC DESIGN FLOW 19

Figure 3.1 CREATING NEW FILE IN XILINX 23

Figure 3.2 DISPLAYS ONE MORE DAILOG BOX FOR SPECIFICATIONS

 IN XILINX 24

Figure 3.3 DISPLAYS AGAIN A DAILOG BOX AS SHOWN BELOW

 WITH THE CREATED PROJECT DESCRIPTION IN XILINX 24

Figure 3.4 SPECIFIED NAME IN CREATED THEN CREATED THE VERILOG

 FILE IN THE PROJECT 24

Figure 3.5 SELECT NEW SOURCE THE IT DISPLAYS THE DIALOG BOX

 WHICH IS CONTAINING OF LIST OF FILE FORMAT 25

Figure 3.6 SELECT INPUTS & OUTPUTS AND INOUTS IN XILINX 26

Figure 3.7 DISPLAYS AGAIN A DAILOGBOX FIVING DETAILS OF

 FILENAME IN XILINX 26

Figure 3.8 OPEN A WHITE SPACE IN THE PROJECT WINDOW

 CONTAINING FILENAME IN XILINX 27

Figure 3.9 WRITING CODE SELECT THE FILENAME IN XILINX 27

Figure 3.10 LIST FILES THEN SELECT FILE FOR WHICH WE ARE

 CREATING THE TESTBENCH IN XILINX 28

Figure 3.11 LIST FILES THEN SELECT FILE FOR WHICH WE ARE

 CREATING THE TESTBENCH IN XILINX 28

Figure 3.12 GIVE A TESTBENCH FILE IN THE PROJECT WINDOW 29

Figure 3.13 SELECT SIMULATION FROM THE VIEWBAR IN THE

 PROJECT WINDOW IN XILINX 29

Figure 3.14 DOUBLE CLICK ON ISE SIMULATOR IN XILINX 30

Figure 3.15 CLICK ON SIMULATE BEHAVIOURAL MODEL IN XILINX 30

Figure 3.16 WAVEFORMS WINDOW HAVING OPTION TO ZOOMOUT &

 ZOOMIN IN XILINX 31

Figure 3.17 INTERFACE OF THE VIVADO SOFTWARE 33

VIII

Figure 3.18 TO CREATE A PROJECT GO TO THE FILE AND CLICK ON

 THE PROJECT 34

Figure 3.19 CREATE PROJECT NAME 35

Figure 3.20 SELECTING PROJECT TYPE 35

Figure 3.21 ADDING FILE VIVADO 36

Figure 3.22 SELECTING CODE IN VIVADO 36

Figure 3.23 SELECTING THE DEFAULT PART 37

Figure 3.24 SELECTING THE FINAL STEP OF PROJECT CREATING 37

Figure 3.25 PROJECT MANAGER OF VIVADO SOFTWARE 38

Figure 3.26 PROJECT SUMMARY OF VIVADO SOFTWARE 38

Figure 3.27 IN DESIGNING SOURCE SELECTING RUN SYNTHESIS 39

Figure 3.28 OPEN SYNTHESIZED DESIGN CLICK OK 39

Figure 3.29 SYNTHESUZED DESIGN 40

Figure 3.30 INSIDE SYNTHESIZED DESIGN 40

Figure 3.31 SELECTING ON SCHEMATIC IN PROJECT SUMMARY 41

Figure 3.32 RUN SIMULATION AND SELECT BEHAVIOURAL SIMULATION 41

Figure 3.33 FINAL PART IN THE VIVADO SIMULATION PART 42

Figure 4.1 WORKING BLOCK DIAGRAM 43

Figure 4.2 FLOW CHART OF VENDING MACHINE 45

Figure 5.1 CASE 1 47

Figure 5.2 CASE 2 48

Figure 5.3 CASE 3 49

Figure 5.4 CASE 4 50

Figure 5.5 CASE 5 51

1

 CHAPTER 1

 INTRODUCTION

Vending machines have become an integral part of modern automated retail systems,

providing quick and efficient delivery of products such as snacks, beverages, and other small

items. These machines play a significant role in various locations, including offices, schools,

hospitals, shopping malls, and transportation hubs, where they offer convenience and round-

the-clock availability of goods. The primary advantage of vending machines is their ability

to operate without human intervention, reducing operational costs and enhancing efficiency.

1.1 INTRODUCTION

The functionality of a vending machine is controlled by an embedded system that processes

user inputs, validates transactions, and dispenses selected items. These systems typically

consist of multiple hardware and software components, including sensors, actuators,

microcontrollers, and payment processing mechanisms. Advanced vending machines

integrate cashless payment options, such as credit/debit cards, mobile wallets, and QR code

scanning, improving accessibility and user experience.

To ensure reliability and accuracy, vending machines employ digital logic circuits to

handle various operations, such as coin detection, product selection, and change dispensing.

The implementation of these digital circuits requires precise design methodologies that

guarantee smooth transaction processing and error-free operation. This has led to the

adoption of Hardware Description Languages (HDLs) such as Verilog for designing and

implementing vending machine controllers.

With the advancement of digital design techniques, Verilog HDL has gained

popularity for modeling, simulation, and verification of digital circuits. It allows designers

to develop efficient vending machine controllers that meet industry standards and

operational requirements. Verilog HDL facilitates the implementation of finite state

machines (FSMs) to manage different states of a vending machine, including idle, coin

acceptance, product selection, transaction validation, and item dispensing. where they offer

convenience and round-the-clock availability of goods. The primary advantage of vending

machines is their ability to operate without human intervention, reducing operational costs

and enhancing efficiency.

2

This project focuses on the design and verification of a vending machine using Verilog HDL.

The system will be modeled as a finite state machine (FSM) to handle coin insertion, product

selection, and item dispensing while ensuring correct transaction processing. The design will

be thoroughly tested and verified using simulation techniques to validate its correctness,

efficiency, and reliability. Through this project, a fully functional vending machine controller

will be developed, demonstrating the application of digital design principles in real-world

automated systems.

1.2. OBJECTIVE

The objective of this project is to design, implement, and verify a digital vending machine

using Finite State Machine (FSM) methodology in Verilog HDL. The vending machine is

designed to handle multiple functions, including coin acceptance, item selection, dispensing,

and returning change, ensuring smooth and efficient transactions.

1. Design Implementation

The vending machine is implemented in Verilog HDL, a hardware description language

suitable for designing digital circuits. The system is divided into different modules, including

coin processing, product selection, dispensing mechanism, and change return logic. The

design follows a structured approach, ensuring modularity and scalability.

2. Finite State Machine (FSM) Development

FSM methodology is employed to manage the vending machine’s operations efficiently. The

system transitions through various states, including:

• Idle State: The machine waits for user input.

• Coin Acceptance State: The inserted coins are validated and stored.

• Selection State: The user selects a product, and the system verifies sufficient balance.

• Dispensing State: The selected item is dispensed.

• Change Return State: If required, the remaining balance is returned to the user.

This structured FSM approach ensures smooth operation and error handling.

3. Synthesis and Implementation

The Verilog design is synthesized using Cadence Genus, optimizing for performance, power,

and area (PPA). The implementation is further refined using Cadence Encounter, ensuring

minimal area usage, efficient power consumption, and faster processing.

3

4. Verification

To ensure correctness, a test bench is created for simulation. The test bench verifies different

scenarios, including valid/invalid inputs, product availability, and balance handling, ensuring

the FSM behaves as expected.

5. Real-World Application

The final design is deployed on an FPGA board to demonstrate its feasibility in real-world

applications. It interacts with physical components like buttons, displays, and actuators,

validating real-time performance and making it suitable for commercial use.

1.3 OVERVIEW OF THE PROJECT

The project "Design and Verification of Vending Machine Using Verilog HDL" focuses on

the development of a digital vending machine using Finite State Machine (FSM)

methodology. The vending machine transitions through multiple states, including idle, coin

acceptance, validation, product dispensing, and change return. FSM-based design ensures

structured state transitions, improving reliability and operational efficiency

Finite State Machine (FSM) Approach

FSM is a sequential circuit design method that ensures the vending machine correctly

handles user inputs and system operations. The major states include:

• Idle State: The system remains in standby mode until a coin is inserted.

• Coin Acceptance State: The machine detects, verifies, and accumulates the inserted

coins.

• Validation State: It checks if the inserted amount is sufficient for the selected

product.

• Product Selection and Dispensing State: If the balance is adequate, the selected

product is dispensed.

• Change Return State: Any remaining balance is returned to the user.

• Error Handling State: Manages invalid selections, insufficient funds, or incorrect

inputs.

FSM ensures efficient state management and minimizes errors in user interactions.

Verilog HDL Implementation

The vending machine is designed using Verilog HDL, a hardware description language

suitable for modeling digital circuits. The design is divided into modular components,

including:

4

• Coin Processing Module: Registers and validates coin inputs.

• Product Selection Module: Detects and processes user selections.

• Control Logic Module: Implements FSM to control system operations.

• Dispensing Mechanism Module: Controls the release of selected products and

change return.

This modular approach enhances design scalability, flexibility, and debugging efficiency.

Verification through Testbench Simulation to ensure the design functions as expected, a

testbench is created to simulate different operational scenarios:

• Valid and invalid coin insertions.

• Correct and incorrect product selections.

• Proper handling of insufficient balance.

• Ensuring correct change return and reset conditions.

Tools like Model Sim or Xilinx Vivado are used for functional verification.

Synthesis and FPGA Deployment. The Verilog code is synthesized using Cadence Genus,

optimizing performance, power, and area (PPA). It is implemented using Cadence Encounter

and tested on an FPGA board with real-time buttons, displays, and actuators for item

dispensing.

5

CHAPTER 2

 LITERATURE SURVEY

2.1. EXISTING SYSTEM

In modern vending machines, many designs employ microcontrollers or embedded systems

for high-level control, often complemented by hardware description languages (HDLs) like

Verilog to handle time-critical tasks. A widely adopted method for implementing vending

machine logic involves using a Finite State Machine (FSM) architecture, typically

implemented in Verilog, to manage the various operational states of the machine.

Description of the Existing Method:

The core of the vending machine operation is managed through a Finite State Machine

(FSM), where each state represents a specific operation (e.g., idle, accepting coins,

dispensing items, returning change). The FSM architecture is implemented using Verilog

HDL to ensure efficient, fast, and reliable state transitions based on the user inputs, coin

detection, and machine status.

In this existing method, the overall vending machine control is distributed between:

1. A Microcontroller or Embedded Processor: Handles high-level tasks such as

managing user interactions, interpreting inputs, and controlling the overall sequence

of operations. The microcontroller might interface with a keypad or touchscreen for

item selection and payment options.

2. Verilog-based FSM: Responsible for controlling hardware components like coin

acceptance, item dispensing, and change return. The FSM ensures that the machine

behaves predictably under different conditions, transitioning between various states

based on user actions (inserting coins, selecting items, etc.).

3. Peripheral Devices and Control Logic: Verilog is also used to implement the

control logic for peripherals like motors, solenoids, coin acceptors, and sensors. For

example, the FSM in Verilog can trigger a motor to dispense an item or control the

solenoid to return change.

Disadvantages of the Existing Method:

1. High Complexity in Hardware Design:

• Requires specialized knowledge of Verilog and digital logic design.

• Steep learning curve for engineers unfamiliar with hardware description languages.

6

2. Long Design and Testing Cycles:

• Any changes to the FSM or hardware logic require full re-synthesis and re-testing.

• Time-consuming iteration and debugging process.

3. Power Consumption:

• FPGA-based designs generally consume more power than microcontroller-based

solutions.

• Higher power usage may increase operational costs, especially in large deployments.

4. Difficulty in Handling Software-like Tasks:

• Verilog is not suitable for complex, high-level tasks like encryption, dynamic pricing,

or mobile payment integration.

• May require additional microcontrollers or systems to handle non-time-critical

operations.

5. Hardware Dependency and Difficulty in Upgrades:

• Changes to the hardware or peripherals require significant changes to the Verilog

code.

• Upgrades are not as flexible as software-based systems and may require

reprogramming the FPGA.

6. Difficulty in Scaling for More Complex Systems:

• As the system grows (e.g., more items, advanced payment options), the FSM

becomes harder to manage.

• Scaling the design can lead to increased complexity and potential resource

exhaustion.

[1] Chopde, Abhay, et al. "Vending Machine Using Verilog (FPGA)." 2024 4th Asian

Conference on Innovation in Technology (ASIANCON). IEEE, 2024.

The design and implementation of a vending machine system using Verilog HDL on an

FPGA board. The vending machine is equipped with multiple states including product

selection, amount selection, dispensing, out-of-stock detection, refund processing, change

calculation, and system reset. The project aims to demonstrate the integration of hardware

description language (Verilog) with FPGA technology to create a functional vending

machine prototype.The design process involved the decomposition of the vending machine's

functionality into smaller modules, each responsible for a specific task. These modules were

then integrated to form the complete system.

7

[2] Fuad, Mahamudul Hassan, et al. "Design of a Vending Machine Using Verilog HDL

and Implementation in Genus & Encounter." European Journal of Electrical

Engineering and Computer Science 7.6 (2023): 88-95.

This paper proposes the design, implementation, and verification of a vending machine using

the Finite State Machine (FSM) methodology in Verilog HDL. The FSM is used to manage

the multiple states of the vending machine, including “idle,” “accepting coins,” “dispensing

item,” and “returning change.” The implementation of the vending machine is done in

Verilog HDL, and the FSM is implemented as a state diagram. The design is then synthesized

using the Genus synthesis tool and implemented using the Encounter implementation tool.

The Genus tool uses advanced optimization techniques, such as timing-driven placement and

clock tree synthesis, to improve the design’s performance and area. The Encounter tool

performs physical design, including placement and routing, to meet the design’s timing,

power, and area constraints. To validate the design’s correctness and functionality, a test

bench is created to simulate the behaviour of the vending machine. The simulation results

are then used to verify that the design meets the required specifications and that the FSM

behaves as expected. The proposed design is then can be implemented on a Field

Programmable Gate Array (FPGA) to demonstrate its effectiveness in a real-world scenario.

The results of the implementation are presented and analyzed to validate the design’s

performance, power consumption, and area. Overall, the vending machine using FSM in

Verilog HDL, implemented in Genus and Encounter, provides a reliable and efficient

solution for users to purchase items from the machine. The proposed design and

implementation demonstrate the feasibility and effectiveness of this approach, and the results

show that the design meets the required specifications and performs well in a real-world

scenario.

[3] Ravikumar, P., MV Ganeswara Rao, and Vamaraju Nikitha. "Verilog Based

Automated Retail System." 2024 OPJU International Technology Conference (OTCON)

on Smart Computing for Innovation and Advancement in Industry 4.0. IEEE, 2023.

The abstract describes an approach for implementing a vending machine using Verilog HDL.

Verilog HDL is a hardware description language that can be used to model digital circuits.

The proposed approach involves designing the vending machine using Verilog HDL and

simulating the design to ensure it meets the required specifications. The design is then

synthesized and implemented on a field-programmable gate array (FPGA). The vending

machine is capable of accepting coins and dispensing products based on the user's selection.

8

2.2 PROPOSED SYSTEM

An abstract machine that can only exist in one of the finite states at any one moment is called

a finite state machine. It is a synchronous sequential machine described by an abstract model.

A sequential machine's most basic model includes inputs, outputs, and internal states. A

machine might have an endless number of alternative histories, therefore it would require an

infinite capacity for storing them, since the output of a sequential circuit depends on both

the current input and the previous inputs, or past histories. We only take into consideration

finite state machines because it is not possible to create machines with limitless storage

capacity.

Finite state machines are sequential circuits whose past histories can affect their

future behaviour in only a finite number of ways, i.e., they are machines with a fixed number

of states. These machines can distinguish among a finite number of classes of input histories.

These classes of input histories are referred to as internal states of the machine. Every finite

state machine therefore contains a finite number of memory devices. Problem Formulation:

The design of a vending machine that dispenses three different priced products and takes

coins with denominations of one, two, five and ten is the difficulty. The machine should also

have the ability to return money upon request cancellation and change back when a coin of

a higher denomination is input. The consumer is prompted by the machine to choose the

product before inserting coins according to the product's price.

Therefore, the machine receives the select and coin signals as inputs. There is one more

input, the cancel option. When the inserted quantity and the selected product's pricing match,

the machine dispenses the product. The machine delivers the customer the product and the

change if they insert a coin with a larger denomination. In the event that the machine does

not have change, it returns the total. Thus, the machine's outputs are product and change. If

a request is cancled, the money is repaid. Return money is thus an additional output. Two

registers are required: one to record the number of coins in the current transaction and the

other to record the overall number of coins in the machine. It is assumed that each register

has ten bits of width. Change can only be provided when a higher denomination coin is

inserted and the overall coin count exceeds the coin count of the current transaction. The

machine determines if the change is available in this manner. These machines can distinguish

among a finite number of classes of input histories.

9

These classes of input histories are referred to as internal states of the machine. Every finite

state machine therefore contains a finite number of memory devices. Problem Formulation:

The design of a vending machine that dispenses three different priced products and takes

coins with denominations of one, two, five and ten is the difficulty. The machine should also

have the ability to return money upon request cancellation and change back when a coin of

a higher denomination is input. A machine might have an endless number of alternative

histories, therefore it would require an infinite capacity for storing them, since the output of

a sequential circuit depends on both the current input and the previous inputs, or past

histories.

 FIG 2.1: SIMPLIFIED VENDING MACHINE ARCHITECTURE

The functionality of a vending machine is controlled by an embedded system that

processes user inputs, validates transactions, and dispenses selected items. These systems

typically consist of multiple hardware and software components, including sensors,

actuators, microcontrollers, and payment processing mechanisms.

10

 Advanced vending machines integrate cashless payment options, such as credit/debit cards,

mobile wallets, and QR code scanning, improving accessibility and user experience.

To ensure reliability and accuracy, vending machines employ digital logic circuits to handle

various operations, such as coin detection, product selection, and change dispensing. The

implementation of these digital circuits requires precise design methodologies that guarantee

smooth transaction processing and error-free operation. This has led to the adoption of

Hardware Description Languages (HDLs) such as Verilog for designing and implementing

vending machine controllers. A machine might have an endless number of alternative

histories, therefore it would require an infinite capacity.

Flow Chart:

 FIG 2.2: FLOW CHART

11

The product must be chosen first, and then the coins must be inserted. As coins are added,

the count is increased. The machine decrements count and restores inserted money in the

event that a cancel signal is delivered. If not, the device compares the amount of money

entered with the cost of the chosen item. The machine dispenses the right product if both are

equal. The machine will provide the right goods and change if the amount entered exceeds

the pricing. The machine waits for the user to insert more coins if the amount of money

inserted is less than the cost of the item they have chosen.

2.3. INTRODUCTION TO VLSI

2.3.1. VLSI TECHNOLOGY

VLSI Design presents state-of-the-art papers in VLSI design, computer-aided design, design

analysis, design implementation, simulation and testing. Its scope also includes papers that

address technical trends, pressing issues, and educational aspects in VLSI Design. The

Journal provides a dynamic high-quality international forum for original papers and tutorials

by academic, industrial, and other scholarly contributors in VLSI Design.

 The development of microelectronics spans a time which is even lesser than the

average life expectancy of a human, and yet it has seen as many as four generations. Early

60’s saw the low density fabrication processes classified under Small Scale Integration (SSI)

in which transistor count was limited to about 10. This rapidly gave way to Medium Scale

Integration in the late 60’s when around 100 transistors could be placed on a single chip.

It was the time when the cost of research began to decline and private firms started entering

the competition in contrast to the earlier years where the main burden was borne by the

military. Transistor-Transistor logic (TTL) offering higher integration densities outlasted

other IC families like ECL and became the basis of the first integrated circuit revolution. It

was the production of this family that gave impetus to semiconductor giants like Texas

Instruments, Fairchild and National Semiconductors. Early seventies marked the growth of

transistor count to about 1000 per chip called the Large Scale Integration.

By mid-eighties, the transistor count on a single chip had already exceeded 1000 and

hence came the age of Very Large Scale Integration or VLSI. Though many improvements

have been made and the transistor count is still rising, further names of generations like ULSI

are generally avoided. It was during this time when TTL lost the battle to MOS family owing

12

to the same problems that had pushed vacuum tubes into negligence, power dissipation and

the limit it imposed on the number of gates that could be placed on a single die.

The second age of Integrated Circuits revolution started with the introduction of the first

microprocessor, the 4004 by Intel in 1972 and the 8080 in 1974. Today many companies like

Texas Instruments, Infineon, Alliance Semiconductors, Cadence, Synopsys, Celox

Networks, Cisco, Micron Tech, National Semiconductors, ST Microelectronics, Qualcomm,

Lucent, Mentor Graphics, Analog Devices, Intel, Philips, Motorola and many other firms

have been established and are dedicated to the various fields in "VLSI" like Programmable

Logic Devices, Hardware Descriptive Languages, Design tools, Embedded Systems etc.

In 1980s, hold-over from outdated taxonomy for integration levels. Obviously, influenced

from frequency bands, i.e., HF, VHF, and UHF. Sources disagree on what is measured (gates

or transistors)

SSI – Small-Scale Integration (0-102)

MSI – Medium-Scale Integration (102 -103)

LSI – Large-Scale Integration (103 -105)

VLSI – Very Large-Scale Integration (105 - 107)

 ULSI – Ultra Large-Scale Integration (>= 107)

 The company was based in Silicon Valley, with headquarters at 1109 McKay Drive in

San Jose, California. Along with LSI Logic, VLSI Technology defined the leading edge of

the application-specific integrated circuit (ASIC) business, which accelerated the push of

powerful embedded systems into affordable products. The company was founded in 1979 by

a trio from Fairchild Semiconductor by way of Synertek - Jack Balletto, Dan Floyd, and

Gunnar Wetlesen - and by Doug Fairbairn of Xerox PARC and Lambda (later VLSI Design)

magazine. Alfred J. Stein became the CEO of the company in 1982. Subsequently VLSI built

its first fab in San Jose; eventually a second fab was built in San Antonio, Texas. VLSI had

its initial public offering in 1983, and was listed on the stock market as (NASDAQ: VLSI).

The company was later acquired by Philips and survives to this day as part of NXP

Semiconductors.

 The first semiconductor chips held two transistors each. Subsequent advances added

more and more transistors, and, as a consequence, more individual functions or systems were

integrated over time. The first integrated circuits held Only a few devices, perhaps as many

as ten diodes, transistors, resistors and capacitors, making it possible to fabricate one or more

logic gates on a single device.

13

Now, known retrospectively as small-scale integration (SSI), improvements in technique led

to devices with hundreds of logic gates, known as medium-scale integration (MSI). Further

improvements led to large-scale integration (LSI), i.e. systems with at least a thousand logic

gates.

 At one time, there was an effort to name and calibrate various levels of large-scale

integration above VLSI. Terms like ultra-large-scale integration (ULSI) were used. But the

huge number of gates and transistors available on common. Current designs, as opposed to

the earliest devices, use extensive design automation and automated logic synthesis to lay

out the transistors, enabling higher levels of complexity in the resulting logic functionality.

Certain high-performance logic blocks like the SRAM (Static Random Access Memory) cell,

however, are still designed by hand to ensure the highest efficiency (sometimes by bending

or breaking established design rules to obtain the last bit of performance by trading stability)

[citation needed]. VLSI technology is moving towards radical level miniaturization with

introduction of NEMS technology. A lot of problems need to be sorted out before the

transition is actually made.

2.3.2. WHY VLSI?

Integration improves the design, lowers the parasitics, which means higher speed and lower

power consumption and physically smaller. The Integration reduces manufacturing cost -

(almost) no manual assembly.

 The course will cover basic theory and techniques of digital VLSI design in CMOS

technology. Topics include: CMOS devices and circuits, fabrication processes, static and

dynamic logic structures, chip layout, simulation and testing, low power techniques, design

tools and methodologies.

 There is an emphasis on modern design issues in interconnect and clocking. We will

also use several case-studies to explore recent real-world VLSI designs (e.g. Pentium, Alpha,

PowerPC Strong ARM, etc.) and papers from the recent research literature. On-campus

students will design small test circuits using various CAD tools. Circuits will be verified and

analyzed for performance with various simulators. Some final project designs will be

fabricated and returned to students the following semester for testing.

14

Very-large-scale integration (VLSI) is the process of creating integrated circuits by

combining thousands of transistor-based circuits into a single chip. VLSI began in the 1970s

when complex semiconductor and communication technologies were being developed. The

microprocessor is a VLSI device. The term is no longer as common as it once was, as chips

have increased in complexity into the hundreds of millions of transistors. The first

semiconductor chips held one transistor each.

 Subsequent advances added more and more transistors, and, as a consequence, more

individual functions or systems were integrated over time. The first integrated circuits held

only a few devices, perhaps as many as ten diodes, transistors, resistors and capacitors,

making it possible to fabricate one or more logic gates on a single device. Further

improvements led to large-scale integration (LSI), i.e. systems with at least a thousand logic

gates. Current technology has moved far past this mark and today's microprocessors have

many millions of gates and billions of individual transistors.

 Now known retrospectively as "small-scale integration" (SSI), improvements in

technique led to devices with hundreds of logic gates, known as large-scale integration (LSI),

i.e. systems with at least a thousand logic gates. Current technology has moved far past this

mark and today's microprocessors have many millions of gates and hundreds of millions of

individual transistors.

 At one time, there was an effort to name and calibrate various levels of large-scale

integration above VLSI. Terms like Ultra-large-scale Integration (ULSI) were used. But the

huge number of gates and transistors available on common devices has rendered such fine

distinctions moot. Terms suggesting greater than VLSI levels of integration are no longer in

widespread use. Even VLSI is now somewhat quaint, given the common assumption that all

microprocessors are VLSI or better.

 This microprocessor is unique in the fact that its 1.4 Billion transistor count, capable

of a teraflop of performance, is almost entirely dedicated to logic (Itanium's transistor count

is largely due to the 24MB L3 cache). Current designs, as opposed to the earliest devices,

use extensive design automation and automated logic synthesis to lay out the transistors,

enabling higher levels of complexity in the resulting logic functionality. Certain high-

performance logic blocks like the SRAM cell, however, are still designed by hand to ensure

the highest efficiency (sometimes by bending or breaking established design rules to obtain

the last bit of performance by trading stability).

15

The original business plan was to be a contract wafer fabrication company, but the venture

investors wanted the company to develop IC (Integrated Circuit) design tools to help fill the

foundry. Thanks to its Caltech and UC Berkeley students, VLSI was an important pioneer in

the electronic design automation industry. It offered a sophisticated package of tools,

originally based on the 'lambda-based' design style advocated by Carver Mead and Lynn

Conway.

VLSI became an early vendor of standard cell (cell-based technology) to the merchant

market in the early 80s where the other ASIC-focused company, LSI Logic, was a leader in

gate arrays. Prior to VLSI's cell-based offering, the technology had been primarily available

only within large vertically integrated companies with semiconductor units such as AT&T

and IBM. VLSI's design tools eventually included not only design entry and simulation but

eventually cell-based routing (chip compiler), a data path compiler, SRAM and ROM

compilers and a state machine compiler. The tools were an integrated design solution for IC

design and not just point tools, or more general purpose system tools.

 A designer could edit transistor-level polygons and/or logic schematics, then run DRC

and LVS, extract parasites from the layout and run Spice simulation, then back-annotate the

timing or gate size changes into the logic schematic database. Characterization tools were

integrated to generate Frame Maker Data Sheets for Libraries. VLSI eventually spun off the

CAD and Library operation into Compass Design Automation but it never reached IPO

before it was purchased by Avanti Corp.

 VLSI's physical design tools were critical not only to its ASIC business, but also in

setting the bar for the commercial EDA industry. When VLSI and its main ASIC competitor,

LSI Logic, were establishing the ASIC industry, commercially-available tools could not

deliver the productivity necessary to support the physical design of hundreds of ASIC

designs each year without the deployment of a substantial number of layout engineers. The

companies' development of automated layout tools was a rational "make because there's

nothing to buy" decision. The EDA industry finally caught up in the late 1980s when Tangent

Systems released its Tan Cell and Tan Gate products. In 1989, Tangent was acquired by

Cadence Design Systems (founded in 1988).

16

Unfortunately, for all VLSI's initial competence in design tools, they were not leaders in

semiconductor manufacturing technology. VLSI had not been timely in developing a 1.0 µm

manufacturing process as the rest of the industry moved to that geometry in the late 80s.

VLSI entered a long-term technology partnership with Hitachi and finally released a 1.0 µm

process and cell library (actually more of a 1.2 µm library with a 1.0 µm gate).As VLSI

struggled to gain parity with the rest of the industry in semiconductor technology, the design

flow was moving rapidly to a Verilog HDL and synthesis flow. Cadence acquired Gateway,

the leader in Verilog hardware design language (HDL) and Synopsys was dominating the

exploding field of design synthesis.

Meanwhile, VLSI entered the merchant high speed static RAM (SRAM) market as

they needed a product to drive the semiconductor process technology development. All the

large semiconductor companies built high speed SRAMs with cost structures VLSI could

never match. ARM Ltd was formed in 1990 as a semiconductor intellectual property licensor,

backed by Acorn, Apple and VLSI. VLSI became a licensee of the powerful ARM processor

and ARM finally funded processor tools. Initial adoption of the ARM processor was slow.

Few applications could justify the overhead of an embedded 32 bit processor. Only in PC

chipsets, did VLSI dominate in the early 90s. This product was developed by five engineers

using the 'Mega cells" in the VLSI library that led to a business unit at VLSI that almost

equaled its ASIC business in revenue. VLSI eventually ceded the market to Intel because

Intel was able to package-sell its processors, chipsets, and even board level products together.

 VLSI also had an early partnership with PMC, a design group that had been nurtured

of British Columbia Bell. When PMC wanted to divest its semiconductor intellectual

property venture, VLSI's bid was beaten by a creative deal by Sierra Semiconductor. The

telecom business unit management at VLSI opted to go it alone. PMC Sierra became one of

the most important telecom ASSP vendors. Scientists and innovations from the 'design

technology' part of VLSI found their way to Cadence Design Systems (by way of Redwood

Design Automation). Compass Design Automation (VLSI's CAD and Library spin-off) was

sold to Avant! Corporation, which itself was acquired by Synopsys.

2.3.3. Structured design

Structured VLSI design is a modular methodology originated by Carver Mead and Lynn

Conway for saving microchip area by minimizing the interconnect fabrics area.

17

This is obtained by repetitive arrangement of rectangular macro blocks which can be

interconnected using wiring by abutment. An example is partitioning the layout of an adder

into a row of equal bit slices cells. In complex designs this structuring may be achieved by

hierarchical nesting.

 Structured VLSI design had been popular in the early 1980s, but lost its popularity

later because of the advent of placement and routing tools wasting a lot of area by routing,

which is tolerated because of the progress of Moore's Law. When introducing the hardware

description language KARL in the mid' 1970s, Reiner Hartenstein coined the term

"structured VLSI design" echoing Edsger Dijkstra's structured programming approach by

procedure nesting to avoid chaotic spaghetti-structured program.

 Only in PC chipsets, did VLSI dominate in the early 90s. This product was

developed by five engineers using the 'Mega cells" in the VLSI library that led to a business

unit at VLSI that almost equaled its ASIC business in revenue. semiconductor technology,

the design flow was moving rapidly to a Verilog HDL and synthesis flow. Cadence acquired

Gateway, the leader in Verilog hardware design language (HDL) and Synopsys was

dominating the exploding field of design synthesis.

2.3.4. APPLICATIONS OF VLSI

➢ Electronic system in cars.

➢ Digital electronics control VCRs

➢ Transaction processing system, ATM

➢ Personal computers and Workstations

 Electronic systems now perform a wide variety of tasks in daily life. Electronic

systems in some cases have replaced mechanisms that operated mechanically, hydraulically,

or by other means; electronics are usually smaller, more flexible, and easier to service. In

other cases electronic systems have created totally new applications. Electronic systems

perform a variety of tasks; some of them are visible while some are hidden.

 Personal entertainment systems such as portable MP3 players and DVD players

perform sophisticated algorithms with remarkably little energy. Electronic systems in cars

operate stereo systems and displays; they also control fuel injection systems, adjust

suspensions to varying terrain, and perform the control functions required for anti-lock

braking systems.

18

Digital electronics compress and decompress video, even at high-definition data rates, on-

the-fly in consumer electronics. Low-cost terminals for Web browsing still require

sophisticated electronics, despite their dedicated function. Personal computers and

workstations provide word-processing, financial analysis, and games. Computers include

both central processing units and special-purpose hardware for disk access, faster screen

display, etc.

 Medical electronic systems measure bodily functions and perform complex

processing algorithms to warn about unusual conditions. The availability of these complex

systems, far from overwhelming consumers. The growing sophistication of applications

continually pushes the design and manufacturing of integrated circuits and electronic

systems to new levels of complexity. And perhaps the most amazing characteristic of this

collection of systems is its variety-as systems become more complex, we build not a few

general-purpose computers but an eve wider range of special-purpose systems.

 Our ability to do so is a testament to our growing mastery of both integrated circuit

manufacturing and design, but the increasing demands of customers continue to test the

limits of design and manufacturing. Electronic systems in cars operate stereo systems and

displays; they also control fuel injection systems, adjust suspensions to varying terrain, and

perform the control functions required for anti-lock braking systems.

2.3.5. ASIC

An Application-Specific Integrated Circuit (ASIC) is an integrated circuit (IC) customized

for a particular use, rather than intended for general-purpose use. For example, a chip

designed solely to run a cell phone is an ASIC. Intermediate between ASICs and industry

standard integrated circuits, like the 7400 or the 4000 series, are application specific standard

products (ASSPs).

 As feature sizes have shrunk and design tools improved over the years, the maximum

complexity (and hence functionality) possible in an ASIC has grown from 5,000 gates to

over 100 million. Modern ASICs often include entire 32-bit processors, memory blocks

including ROM, RAM, EEPROM, Flash and other large building blocks. Such an ASIC is

often termed a SoC (system-on-a-chip). Designers of digital ASICs use a hardware

description language (HDL), such as Verilog or VHDL, to describe the functionality of

ASICs. Field-programmable gate arrays (FPGA).

19

 The modern-day technology for building a breadboard or prototype from standard parts;

programmable logic blocks and programmable interconnects allow the same FPGA to be

used in many different applications. For smaller designs and/or lower production volumes,

FPGAs may be more cost effective than an ASIC design even in production.

2.3.6. ASIC DESIGN FLOW

As with any other technical activity, development of an ASIC starts with an idea and takes

tangible shape through the stages of development. The first step in this process is to expand

the idea in terms of behaviour of the target circuit. The growing sophistication of applications

continually pushes the design and manufacturing of integrated circuits and electronic

systems to new levels of complexity.

Design description is an activity independent of the target technology or manufacturer.

It results in a description of the digital circuit. To translate it into a tangible circuit, one goes

through the physical design process. The same constitutes a set of activities closely linked

to the manufacturer and the target technology.

FIG 2.3: ASIC DESIGN

20

The design is tested through a simulation process; it is to check, verify, and ensure that what

is wanted is what is described. Simulation is carried out through dedicated tools. With every

simulation run, the simulation results are studied to identify errors in the design description.

The errors are corrected and another simulation run carried out.

FIG 2.4: ASIC DESIGN FLOW

21

CHAPTER 3

SOFTWARE REQUIREMENTS

3.1 XILINX ISE

Xilinx, Inc. is the world's largest provider of programmable common sense devices, the

inventor of the field programmable gate array (FPGA) and the primary semiconductor

organization with a fabless manufacturing version. Xilinx designs, develops and markets

programmable logic merchandise including incorporated circuits (ICs), software program

design equipment and predefined gadget functions added as intellectual property (IP) cores,

design offerings, patron education, area engineering and technical assist. Xilinx sells each

FPGAs and CPLDs programmable common sense devices for electronic equipment

producers in cease markets along with communications, commercial, customer, automobile

and statistics processing.

Xilinx's FPGAs have even been used for the ALICE (A huge Ion Collider test) on the

CERN ecu laboratory at the French-Swiss border to map and disentangle the trajectories of

heaps of subatomic debris. The Vertex-II seasoned, Virtex-6, Virtex-five, and Virtex-6 FPGA

families are mainly focused on gadget-on-chip (SOC) designers due to the fact they consist

of up to two embedded IBM PowerPC cores. The ISE layout Suite is the critical digital

design automation (EDA) product own family sold by using Xilinx.

The ISE design Suite features include design access and synthesis assisting Verilog or

VHDL, place-and-route (PAR), completed verification and debug using Chip Scope pro

equipment, and advent of the bit documents which can be used to configure the chip. XST-

Xilinx Synthesis era performs device particular synthesis for Cool Runner XPLA3/-II and

XC9600/XL/XV households and generates an NGC report ready for the CPLD more fit.

3.2 XILINX ISE 13.2i:

Xilinx is the maximum important tool and in this device we are able to carry out both

simulation and synthesis.

3.2.1 Simulation:

 In this process, we are going to verify our required output to get the simulation technique

first of all we need to enforce a top module (combination of all modules) after which in the

simulation conduct we can simulate the result.

22

3.2.2 Synthesis:

Synthesis process defines converting Verilog code into gate level which creates a net list.

3.2.3 Procedure:

• Click project navigator

• Create new project

• Selection of FPGA

Create new source

• Select source type (Verilog module)

• Coding

• Declaration of inputs and output

• Sources for implementation

Synthesize – XST

• Check syntax

• View design summary

• View RTL schematic

• View technology schematic

• Sources for behavioural simulation

Create new source

• Select source type (Verilog text fixture)

• Write test bench code

• Xilinx ISE simulator

• Behavioural check syntax

• Simulate behavioural model

3.3 PROCEDURE FOR SYNTHESIS:

Xilinx designs, develops and markets programmable logic merchandise including

incorporated circuits (ICs), software program design equipment and predefined gadget

functions added as intellectual property (IP) cores, design offerings, patron education, area

engineering and technical assist. Xilinx sells each FPGAs and CPLDs programmable

common sense devices for electronic equipment producers in cease markets along with

communications, commercial, customer, automobile and statistics processing.

23

It is a comprehensive software suite that offers a modern platform for the design, synthesis,

and verification of FPGA-based systems.

PROCEDURE FOR XILINX

1.To create new project in xilinx we should open the filemenu,click on new project then it

will open the dialogbox as below in that typethe filename click on next

FIG 3.1: CREATING NEW FILE IN XILINX

24

2.Then it isplays one more dialogbox which will give us the specifications of the project,click

on next

FIG 3.2: DISPLAYS ONE MORE DAILOG BOX FOR SPECIFICATIONS IN XILINX

3.Then it again displays a dialogue box as shown below with the created project description

and click finish to compelte the process of creating new project

FIG 3.3: DISPLAYS AGAIN A DAILOG BOX AS SHOWN BELOW WITH THE CREATED

PROJECT DESCRIPTION IN XILINX

25

4.Now project with specifyed name is created then create the verilog files in the project. To

create filesr, right click on the project that will show options like as shown below

FIG 3.4: SPECIFIED NAME IS CREATED THEN CREATE THE VERILOG FILES IN THE

PROJECT

5.From the given options select new source then it diaplays dialogbox which is containing

of list of fileformat now we want to create verlogfile so select veilog module,and give the

name to the file. Then click on next

FIG 3.5: SELECT NEW SOURCE THE IT DISPLAYS DAILOGBOX WHICH IS

CONTAINING OF LIST OF FILE FORMAT IN XILINX

26

6.Then it will ask us to select inputs,outputs and inouts. We can specify our inputs and

outputs here else we may also specify as part of programme depend upon the user

requirement, click on next

FIG 3.6: SELECT INPUTS & OUTPUTS AND INOUTS IN XILINX

7.It will again displays a dilagbox by fiving details of filename etc, click on next

FIG 3.7: DISPLAYS AGAIN A DAILOGBOX BY FIVING DETAILS OF FILENAME IN

XILINX

27

8.It will open a white space in the project window containing filename the double click on

the file name so that it will displays respective file windows, where we should write the code

FIG 3.8: OPEN A WHITE SPACE IN THE PROJECT WINDOW CONTAINING FILENAME

IN XILINX

9.After completion writing code select the file name and click on synthesis which will check

for errors, if there are any errors in syntax or design errors are checked and shown in the

below of file window

FIG 3.9: WRITING CODE SELECT THE FILENAME IN XILINX

28

10.After sucessful synthesis we should have to create tesh bench file with extension as

test,for that again riht click on the file name as shown below,give filename

FIG 3.10: AFTER SUCCESSFUL SYNTHESIS WE SHOULD HAVE TO CREATE TEST BENCH

FILE IN XILINX

11.If there are list files then select file for which we are creating the test bench. Click on next

FIG 3.11: LIST FILES THEN SELECT FILE FOR WHICH WE ARE CREATING THE TEST

BENCH IN XILINX

29

12.It again gives a testbench file in the project window, then give reqired inputs

FIG 3.12: GIVE A TEST BENCH FILE IN THE PROJECT WINDOW IN XILINX

13.select simulation from the view bar in the project window above the hiearchy window as

follows.

FIG 3.13: SELECT SIMULATION FROM THE VIEW BAR IN THE PROJECT WINDOW IN

XILINX

30

14. Double click on Isim Simulator it will expand as follows click on behavioural check

syntax and it will check for syntax errors in test bench file

FIG 3.14: DOUBLE CLICK ON ISE SIMULATOR IN XILINX

15. click on simulate behavioural model, it will displays wave form for in response to the

inputs given in the test bench file

FIG 3.15: CLICK ON SIMULATE BEHAVIOURAL MODEL IN XILINX

31

16.That wave form window having option to zoom out, zoom in to analyze the wave form

clearly in order to understand behaviour of design

FIG 3.16: WAVEFORM WINDOW HAVING OPTION TO ZOOMOUT & ZOOM IN, IN XILINX

VIVADO SOFTWARE

Here we have used XILINX updated version that is VIVADO SOFTWARE TOOL

Vivado is Xilinx's flagship design suite for FPGA and System-on-Chip (SoC) development.

It is a comprehensive software suite that offers a modern platform for the design, synthesis,

and verification of FPGA-based systems. Vivado replaces the older ISE Design Suite and

provides a more advanced and integrated environment for high-performance FPGA

development.

Key Features of Vivado:

1. High-Level Synthesis (HLS): Vivado allows users to design systems using C, C++, and

System C code, which is then automatically converted into hardware description

language (HDL) code for FPGA implementation. This feature speeds up the design

process and makes it easier to implement complex algorithms.

2. IP Integrator: Vivado includes a powerful IP catalog that provides pre-designed

modules (IP cores) that can be integrated into a design. These IP cores cover a wide

range of functionality, including communication protocols, memory controllers, and

more.

32

3. Synthesis and Implementation: Vivado provides powerful tools for synthesizing and

optimizing designs. It uses advanced place and route algorithms to ensure efficient use

of FPGA resources, maximizing performance, minimizing power consumption, and

reducing area.

4. Simulation and Debugging: Vivado includes built-in simulation tools like Vivado

Simulator and support for Model Sim, making it easier to test and debug your design.

Debugging tools like Integrated Logic Analyzer (ILA) and Chip Scope help you capture

internal signals and verify functionality in real-time on the FPGA hardware.

5. Constraint Management: Vivado allows you to define timing, placement, and resource

constraints, ensuring your design meets performance goals and works within the

limitations of the target FPGA.

6. Programming and Deployment: Vivado allows direct FPGA programming through the

software, helping

7. load the final bitstream file onto the FPGA board.

8. VIVADO is made with a superior synergistic blend of natural extracts and vitamins

to provide complete immunity and cardio coverage.

How Vivado is Used in FPGA Development:

1. Design Creation: You can create your digital design in Vivado using either HDL

(Verilog or VHDL) or high-level synthesis tools (C, C++).

2. Synthesis: After writing your HDL code, Vivado synthesizes the design, turning your

HDL code into a netlist that describes how the hardware will be implemented on the

FPGA.

3. Implementation: The implementation step involves mapping the synthesized netlist

onto the FPGA hardware, considering factors like placement (where elements are

physically located on the FPGA) and routing (how signals are connected between

elements).

4. Simulation: Vivado supports both pre-synthesis and post-synthesis simulation to ensure

that your design functions correctly before it’s deployed onto the actual FPGA.

5. Optimization: Vivado helps optimize the design for performance (speed), power, and

area by adjusting the synthesized netlist and applying specific place and route

optimizations.

33

6. Bitstream Generation: Once the design is verified, Vivado generates a bitstream file

that configures the FPGA with your design. This file is then downloaded onto the FPGA

for real-time operation.

7. Debugging and Verification: Vivado supports real-time debugging by connecting the

FPGA to the Vivado Logic Analyzer or Chip Scope, enabling you to capture and analyze

internal signals during execution, ensuring your design works as expected.

How Vivado Works:

Vivado simplifies the process of designing, synthesizing, verifying, and deploying FPGA

systems. After creating the design (in Verilog, VHDL, or C/C++), Vivado compiles the code

into a configuration file (bitstream), which is uploaded to the FPGA hardware. The FPGA

then implements the logic and functionality specified in the design, interacting with external

peripherals, sensors, or other devices. Vivado Design Suite, developed by AMD (formerly

Xilinx), is a comprehensive software environment for the synthesis and analysis of hardware

description language (HDL) designs. It's crucial for designing and implementing complex

digital circuits on Field-Programmable Gate Arrays (FPGAs) and Adaptive SoCs.

STEPS FOR VIVADO SOFTWARE

STEP1: Interface of the vivado software

FIG 3.17: INTERFACE OF THE VIVADO SOFTWARE

34

STEP2: To create a project go to the file and click on project then click on new

FIG 3.18: TO CREATE A PROJECT GO TO THE FILE AND CLICK ON PROJECT

STEP3: Click on next

FIG 3.18: CREATE A NEW VIVADO PROJECT

35

STEP4: Give project name without space then click next

FIG 3.19: CREATE PROJECT NAME

STEP5: Select RTL Project then click next

FIG 3.20: SELECTING PROJECT TYPE

36

STEP6: Select add files

FIG 3.21: ADDING FILES VIVADO

STEP7: Then it shows some file select the code click on ok

FIG 3.22: SELECTING CODE IN VAVADO

37

STEP8: Click on next

FIG 3.23: SELECTING THE DEFAULT PART

STEP9: Click on finish

FIG 3.24: SELECTING THE FINAL STEP OF PROJECT CREATING

38

STEP10: It is the project manager

FIG 3.25: PROJECT MANAGER OF VIVADO SOFTWERE

STEP11: On left side is project summary

FIG 3.26: PROJECT SUMMARY OF VIVADO SOFTWARE

39

STEP12: In design source click on uut: vm1 then click Run Synthesis

FIG 3.27: IN DESIGNING SOURCE SELECTING RUN SYNTHESIS

STEP13: Select open synthesized design click ok

FIG 3.28: OPEN SYNTHESIZED DESIGN CLICK OK

40

STEP14: Synthesized design

FIG 3.29: SYNTHESIZED DESIGN

STEP15: Inside synthesized design

FIG 3.30: INSIDE SYNTHESIZED DESIGN

41

STEP16: Clicking on schematic in project summary schematic diagram

FIG 3.31: SELECTING ON SCHEMATIC IN PROJECT SUMMARY

STEP 17: In design source click on tb_vm1 then Run Simulation select Run Behavioural

Simulation

FIG 3.32: RUN SIMULATION AND SELECT BEHAVIOURAL SIMULATION

42

STEP18: It is simulation

FIG 3.33: FINAL PART IN VIVADO SIMULATION PART

43

CHAPTER 4

 WORKING OF THE PROJECT

4.1 WORKING OF THE PROJECT

BLOCK DIAGRAM

 FIG 4.1: WORKING BLOCK DIAGRAM

Automation has revolutionized the world. Today instead of shopkeepers selling items

manually, we have automatic machines accepting money and dispensing products. Vending

machines are devices where the customers insert coins or credit cards to purchase

newspapers, snacks, beverages, tickets, etc. It is the most practical method of purchasing.

Vending machines operate through a combination of electromechanical processes.

Initially, the user inputs payment, which is then validated by the machine's internal system,

checking for authenticity and value. Once payment is confirmed, the user selects a product

via a keypad or touchscreen. This selection triggers an internal mechanism, often involving

motors and coils, to release the chosen item.

44

Sensors within the machine ensure the product has been dispensed correctly, and if not, the

system may retry or initiate a refund. Modern machines also incorporate digital technologies,

allowing for cashless payments and remote inventory monitoring, thereby providing a very

convenient and efficient way for consumers to obtain products.

In the project, we have designed a sequential circuit that dispenses various products

when coins are inserted into the machine. The article describes the modeling of the Finite

State-based Vending Machine using the mealy model. The code for the vending machine is

written in Verilog HDL and simulated in the Model Sim. A finite state machine is an abstract

machine that can be in any number of states at any given time. It is a model that describes

the synchronous sequential machine. Every sequential circuit has inputs, outputs, and an

internal state.

Based on the present state and the present input, the finite state machines can be of two types:

1. MooreFiniteStateMachine

If the next state of the system depends only on the present state, then it is called a Moore

Finite State Machine.

2. MealyFiniteStateMachine

If the next state of the system depends on both the present state and the present input, then

it is called a Mealy Finite State Machine.

The Mealy Finite State Machine is implemented in the project.

In this project, we have designed a vending machine that can dispense three products of

different prices with additional features of ‘return balance’ when the money of higher

denomination is inserted and ‘return money’ when the request is cancelled. Any Sequential

digital circuit can be converted into a state machine using a state diagram. In a state machine,

the circuit’s output is a different set of states i.e. each output is a state. There is a State

Register to hold the state of the machine. There is a next state logic to decode the next state.

Furthermore, many vending machines now feature temperature control, ensuring

perishable items like beverages and snacks are stored at optimal conditions. Advanced

models can also display nutritional information and allergen warnings, catering to consumer

health needs. Network connectivity allows for real-time sales data collection, enabling

operators to optimize product offerings and restock efficiently. Some machines even offer

interactive displays, providing advertising and entertainment options. The integration of

mobile payment systems and loyalty programs enhances the user experience.

https://eda.sw.siemens.com/en-US/modelsim-student-edition-unavailable/

45

There is also an output register that defines the output of the machine. The next state (ns)

logic is the sequential part of the machine. The output and present state (ps) is the Register

part.

The products available in the program are as follows.

Newspaper- priced at Rs.5

Cadbury bar- priced at Rs. 10

Tropicana juice- priced at Rs. 15

The buyer can insert money of the following denomination.

Rs. 5

Rs. 10

Rs. 20

The states defined in the design of the vending machine are:

Void State

Five State

Ten State

Fifteen State

As per the money inserted by the buyer, the machine will output the products and change if

extra money is inserted.

 FIG 4.2: FLOW CHART OF VENDING MACHINE

46

The flowchart explains the entire process of how the vending machine functions in the

program. Initially, the customer must select the product followed by inserting the money.

After inserting the money, the machine checks if the cancel button is pressed by the customer.

If the customer presses the cancel button, the money is returned to the customer. Else the

machine checks the inserted money with the price of the selected product. If both are equal,

then the machine dispenses the product. If the inserted money is greater than the price, then

the vending machine gives the appropriate product along with the change. If the inserted

money is less than the price of the selected product, then the vending machine waits for the

customer to insert more money.

The flowchart illustrates the operational logic of a simple vending machine,

beginning with the user selecting a product. Subsequently, the user inserts coins, and the

machine increments the count of the money received. A decision point is then reached: if the

user cancels, the machine returns the money and stops. If not, the machine checks if the

inserted money equals the product's price. If it does, the product is dispensed, and the process

ends. If the money exceeds the price, the product is dispensed along with the change, and

the process concludes. However, if the inserted money is less than the price, the process

loops back, prompting the user to insert more coins. This cycle continues until either the

correct amount is inserted, a cancellation occurs, or change is dispensed, ultimately leading

to the "Stop" state. The flowchart effectively portrays the sequential and conditional steps

involved in a basic vending machine transaction.

This flowchart represents a foundational model of a vending machine's transaction

process, highlighting the core interactions between the user and the machine. It simplifies

the complex electronic and mechanical operations into a series of logical steps, focusing on

the user's perspective. The "Select the product" stage initiates the transaction, setting the

stage for the payment process. The "Insert coins" and "Increment count" steps form the

iterative payment phase, where the machine accumulates the user's input. The inclusion of

the "Cancel?" decision point provides the user with an option to terminate the transaction,

ensuring flexibility and user control. The "Money = Price?" and "Money > Price?" decision

points are critical for determining the outcome of the transaction, distinguishing between

exact payment, overpayment, and underpayment scenarios. The loop back to "Insert coins"

emphasizes the machine's ability to handle insufficient funds, prompting the user for

additional payment. The "Give product" and "Give product and change" actions signify

successful transactions, marking the culmination of the process.

47

 CHAPTER 5

 RESULTS

5.1 RESULT OF THE PROJECT

The Verilog testbench (tb_vm1.v) is designed to verify the functionality of a vending

machine module (vm1). It initializes various input signals, applies test cases, and observes

the system's behaviour. The testbench first sets the clock (clk) to 1, enables the reset (rst),

and initializes the coin and item inputs to zero. The reset is then deactivated to allow normal

operation. The vending machine accepts a 2-bit coin input representing different

denominations and a 3-bit item input to select different products, including candy, cake, and

cooldrink.

The testbench systematically tests each product selection by setting the item input to a

specific value and varying the coin input across four different values. The first test case

selects candy (item = 3'b001) and applies coin values sequentially to observe if the correct

product is dispensed. The same approach is used to test cake (item = 3'b010) and cooldrink

(item = 3'b011). Additionally, the testbench verifies the scenario where no item is selected

(item = 3'b000), checking if the vending machine correctly handles cases with invalid

selections.

FIG 5.1: CASE 1

48

A clock signal is generated using an always block that toggles the clk signal every 10 time

units, ensuring the vending machine operates synchronously.

The testbench provides a comprehensive validation of the vending machine's behavior

by simulating various input combinations and monitoring the outputs, including the

dispensed product signals (candy, cake, cooldrink) and the returned change (change[3:0]).

The simulation results will help determine whether the vending machine logic is functioning

correctly.

The provided figure presents a simulation waveform, a crucial tool in digital circuit

design, used to visualize and verify the behavior of a circuit over time. The right side of the

image displays the waveforms, where the horizontal axis represents time, measured in

FIG 5.2: CASE 2

nanoseconds, and the vertical axis indicates the value of each signal. The left side enumerates

the signals being simulated, including a clock signal (clk), a reset signal (rst), user inputs for

item selection (item [2:0]) and coin insertion (coin [1:0]), output signals for item dispensing

(candy, cake, cooldrink), and the calculated change (change [3:0]). The waveforms illustrate

the dynamic changes in these signal values, allowing designers to observe the circuit's

response to different inputs and conditions. For instance, the item and coin signals show user

selections, while the dispensing signals and change signal reflect the machine's output. The

yellow vertical line at 52.000 ns pinpoints a specific time for detailed analysis. Overall, this

simulation waveform serves as a visual representation of the circuit's operation, enabling

designers to confirm its functionality and identify any potential issues.

49

Notably, the waveform includes a clock signal (clk), characterized by its periodic square

wave, which serves as the timing reference for the circuit. A reset signal (rst) is also depicted,

transitioning from low to high momentarily, indicating an initialization phase. The user's

input is represented by the coin [1:0] signal, which cycles through values 0 to 3, likely

representing different coin denominations, and the item [2:0] signal, which

FIG 5.3: CASE 3

indicates the selected product. The output of the circuit is shown through the candy, cake,

and cooldrink signals, which go high when the corresponding item is dispensed, and the

change [3:0] signal, displaying the calculated change in hexadecimal format. The yellow

vertical line at 146.500 ns marks a specific point in time for detailed analysis. This waveform

effectively visualizes the circuit's operation, enabling designers to verify its functionality and

timing characteristics.

The figure presents a digital circuit simulation waveform, a visual representation of

signal behaviour over time, crucial for verifying the functionality of digital designs. The

horizontal axis represents time in nanoseconds, while the vertical axis displays the values of

various signals. The simulation includes a clock signal (clk), a periodic square wave essential

for synchronizing the circuit's operations. A reset signal (rst) is also present, transitioning

briefly to a high state, indicating an initialization phase. The coin [1:0] signal represents user

input, cycling through values 0 to 3, likely corresponding to different coin denominations.

50

The item [2:0] signal indicates the selected item, with values 1, 2, 3, and 0 representing

different choices.

The output of the circuit is shown through the candy, cake, and cooldrink signals, which go

high when the respective item is dispensed, and the change [3:0] signal, displaying the

calculated change in hexadecimal format. The yellow vertical line at 168.000

FIG 5.4: CASE 4

 marks a specific time for detailed analysis of the signal values. This waveform allows

designers to observe the timing and behaviour of the circuit, ensuring it functions as

intended.

The image displays a simulation waveform, a critical tool for verifying the

functionality of digital circuits. The horizontal axis represents time, measured in

nanoseconds, while the vertical axis shows the values of various signals. The simulation

includes a clock signal (clk), a periodic square wave essential for synchronizing the circuit's

operations, and a reset signal (rst), which is initially low and briefly goes high for

initialization.

The output of the circuit is shown through the candy, cake, and cooldrink signals,

which go high when the respective item is dispensed, and the change [3:0] signal, displaying

the calculated change in hexadecimal format.

The simulation includes a clock signal (clk), a periodic square wave essential for

synchronizing the circuit's operations.

51

 A reset signal (rst) is also present, transitioning briefly to a high state, indicating an

initialization phase. The coin [1:0] signal represents user input, cycling through values 0 to

3, likely corresponding to different coin denominations.

FIG 5.5: CASE 5

The coin[1:0] signal represents user input, cycling through values 0 to 3, likely indicating

different coin denominations. The item[2:0] signal indicates the selected item, with values

1, 2, 3, and 0 representing different choices. The output of the circuit is shown through the

candy, cake, and cooldrink signals, which go high when the respective item is dispensed, and

the change[3:0] signal, displaying the calculated change in hexadecimal format. The yellow

vertical line at 192.000 ns marks a specific time for detailed analysis. This waveform allows

designers to observe the timing and behaviour of the circuit, ensuring it functions as

intended.

The image depicts a simulation waveform, a fundamental tool used in digital circuit

design for verifying the behaviour of a circuit over time. The horizontal axis represents time,

measured in nanoseconds, while the vertical axis displays the values of various signals. The

simulation includes a clock signal (clk), a periodic square wave essential for synchronizing

the circuit's operations, and a reset signal (rst), which is initially low and briefly goes high

for initialization. The coin [1:0] signal represents user input, cycling through values 0 to 3,

likely indicating different coin denominations. The item [2:0] signal indicates the selected

item, with values 1, 2, 3, and 0 representing different choices.

52

5.2 APPLICATIONS

1. Automated Retail Systems: Vending machines designed with Verilog can be used in

automated retail applications where items such as snacks, beverages, or electronics are

dispensed upon payment.

2.Coin-Based Systems: Verilog can be used to model the logic of handling and verifying

coin inputs, ensuring that only valid payments are processed and correct change is given.

3.Automated Ticket Machines: A vending machine design in Verilog can be adapted for

ticket vending systems for transportation (e.g., metro tickets, bus tickets), where users input

money and select a ticket type.

4.Smart Vending Machines: In modern vending systems, Verilog can be used to model

systems that interface with IoT devices for inventory management, or even be integrated

with credit/debit card readers.

5.3 ADVANTAGES

1.Hardware-Level Design: Verilog allows you to describe the vending machine at the

hardware level, which provides a clear and precise way of simulating physical components

like coin insertion, dispensing mechanisms, and user inputs.

2.Parallelism: Verilog allows for parallelism in the design, meaning that multiple tasks (e.g.,

accepting coins, checking button presses, dispensing products) can occur simultaneously.

This is essential for the responsive nature of a vending machine.

3.Accuracy and Reliability: Once verified and synthesized, Verilog designs are highly

reliable when implemented on FPGA or ASIC devices. The digital circuits derived from

Verilog descriptions are deterministic and follow well-defined timing constraints.

4.Synthesis for Hardware: Verilog designs can be synthesized into hardware for real-world

implementation. Once verified via simulation, the code can be directly mapped to hardware

devices such as FPGAs, providing a hardware-accelerated solution for the vending machine

system.

5.Simulation and Verification: With Verilog, you can easily simulate the entire vending

machine operation (including different inputs and states) using various simulation tools. This

helps in ensuring that the design works as expected before actual deployment.

53

CHAPTER 6

CONCLUSION & FUTURE SCOPE

CONCLUSION

In this work, we presented the design, implementation, and verification of a vending machine

using Finite State Machine (FSM) methodology in Verilog HDL, implemented in Quartus II

Software in the STRATIX-II FPGA. The proposed design and implementation provide a

reliable and efficient solution for users to purchase items from the vending machine. The

FSM model is used to manage the multiple states of the vending machine, including “idle”

“accepting coins,” “dispensing item,” and “returning change.” The FSM is implemented as

a state diagram in Verilog HDL, which provides a highlevel abstraction of the hardware and

makes it easy to simulate, synthesize, and implement the design. The implementation of the

vending machine is done using the Quartus synthesis tool. The tool optimizes the design for

timing, area, and power, performs physical design, including placement and routing, to meet

the design’s timing, power, and area constraints.

The proposed design is validated using a test bench, which simulates the behavior of

the vending machine. The simulation results are used to verify that the design meets the

required specifications, and that the FSM behaves as expected. The proposed design is also

can be implemented on an FPGA to demonstrate its effectiveness in a real-world scenario.

 The results of the implementation show that the proposed design meets the required

specifications and performs well in a real-world scenario.

The design’s performance, power consumption, and area are analyzed, and the results

show that the design is efficient and reliable. The proposed design and implementation

demonstrate the feasibility and effectiveness of using FSM in Verilog HDL and

implementing the design in Genus and Encounter for vending machine applications. The

proposed design can be further extended and optimized for more complex vending machines,

and it can also be used asa basis for other digital systems that require FSM-based designs.

The proposed design runs at 200MHz frequency.

54

FUTURE SCOPE

1. Core Design & Verification:

 Verilog HDL Implementation:

• Create a digital circuit model for a vending machine, handling coin inputs, product

selection, and dispensing.

• Employ a state machine to manage the vending process (idle, coin insertion,

selection, dispensing).

• Implement logic for calculating change.

Verification:

• Develop a Verilog testbench to simulate and verify the design's functionality.

• Utilize test cases to cover various scenarios (valid/invalid inputs, edge cases).

• Employ System Verilog for advanced verification (constrained-random testing,

assertions).

• Formal Verification to prove correct operation.

2. Brief Future scope:

The future of a Verilog HDL vending machine project lies in transforming it from a basic

digital circuit into a sophisticated, connected, and intelligent system. Key areas of

development include:

Advanced Payment Systems:

• Integration of cashless payment options (NFC, credit cards, mobile wallets).

• Secure transaction processing.

Enhanced User Interface:

• Touchscreen displays for product selection and information.

• Personalized user experiences.

IoT Connectivity:

• Remote monitoring and management of vending machines.

• Real-time data collection and analysis (sales, inventory).

• Predictive maintenance.

55

AI Integration:

• Demand forecasting and inventory optimization.

• Personalized product recommendations.

• Facial recognition for age verification.

Modular Design & Customization:

• Create a reusable and scalable hardware platform.

• Allow for easy customization of product offerings and payment options.

FPGA/SoC Deployment:

• Implement the design on FPGAs or SoCs for real-world deployment.

• Integrate with embedded systems for advanced functionality.

Cybersecurity:

• Implementation of security to prevent fraud.

• Secure communication protocols.

In essence, the project evolves from a hardware design exercise to a platform for innovation

in automated retail, leveraging connectivity, data, and AI to create more efficient and user-

friendly vending solutions.

56

 REFERENCE

[1] Chopde, Abhay, et al. "Vending Machine Using Verilog (FPGA)." 2024 4th Asian

Conference on Innovation in Technology (ASIANCON). IEEE, 2024.

[2] Fuad, Mahamudul Hassan, et al. "Design of a Vending Machine Using Verilog HDL and

Implementation in Genus & Encounter." European Journal of Electrical Engineering and

Computer Science 7.6 (2023): 88-95.

[3] Ravikumar, P., MV Ganeswara Rao, and Vamaraju Nikitha. "Verilog Based Automated

Retail System." 2024 OPJU International Technology Conference (OTCON) on Smart

Computing for Innovation and Advancement in Industry 4.0. IEEE, 2023.

[4] Rakshith, S., and S. Niranjana. "User-friendly Vending Machines: A Moore FSM

Perspective." 2023 5th IEEE Global Conference for Advancement in Technology (GCAT).

IEEE, 2023.

[5] Barra, Marco Antonio Quispe, et al. "Modeling and Simulation of a Vending Machine

Through FSM Using VHDL." Brazilian Technology Symposium. Cham: Springer Nature

Switzerland, 2022.

57

APPENDIX

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 17:18:00 03/22/2025

// Design Name:

// Module Name: vm1

// Project Name:

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module vm1(candy,cake,cooldrink,change,clk,rst,coin,item);

output reg candy,cake,cooldrink;

output reg [3:0]change;//0101-5;1010-10;1111-15;

reg [1:0]p_candy;

reg [1:0]p_cake;

reg [1:0]p_cooldrink;

reg [1:0]p_extra;

input [2:0]item;//000-no item,001-candy,010-cake,011-cooldrink

input clk,rst;

input [1:0]coin;//00-5rs,01-10rs,10-15rs,11-20rs;

parameter s0 = 3'b000;

58

parameter s1 = 3'b001;

parameter s2 = 3'b010;

parameter s3 = 3'b011;

initial

begin

p_candy=2'b00;

p_cake=2'b01;

p_cooldrink=2'b10;

p_extra=2'b11;

end

always @(posedge clk)

begin

if (rst==1)begin

candy=0;

cake=0;

cooldrink=0;

change=0;end

else begin

case(item)

//..candy

s1:begin if(coin==p_candy)begin

candy=1;

cake=0;

cooldrink=0;

change=0;end

else if(coin==p_cake)begin

candy=1;

cake=0;

cooldrink=0;

change=4'd5;end

59

else if(coin==p_cooldrink)begin

candy=1;

cake=0;

cooldrink=0;

change=4'd10;end

else if(coin==p_extra)begin

candy=1;

cake=0;

cooldrink=0;

change=4'd15;end

else begin

candy=0;

cake=0;

cooldrink=0;

change=4'd0;end

end

//..

//..cake

s2:begin if(coin==p_candy)

begin

candy=0;

cake=0;

cooldrink=0;

change=0;

end

else if(coin==p_cake)

begin

candy=0;

cake=1;

cooldrink=0;

change=0;

end

else if(coin==p_cooldrink)

begin

60

candy=0;

cake=1;

cooldrink=0;

change=4'd5;

end

else if(coin==p_extra)

begin

candy=0;

cake=1;

cooldrink=0;

change=4'd10;

end

else

begin

candy=0;

cake=0;

cooldrink=0;

change=4'd0;

end

end

//..

//..cooldrink

s3:begin if(coin==p_candy)

begin

candy=0;

cake=0;

cooldrink=0;

change=0;

end

else if(coin==p_cake)

begin

candy=0;

cake=0;

cooldrink=0;

61

change=0;

end

else if(coin==p_cooldrink)

begin

candy=0;

cake=0;

cooldrink=1;

change=0;

end

else if(coin==p_extra)

begin

candy=0;

cake=0;

cooldrink=1;

change=4'd5;

end

else

begin

candy=0;

cake=0;

cooldrink=0;

change=4'd0;

end

end

//...

default: begin

candy=0;

cake=0;

cooldrink=0;

change=4'd0;

end

//...

endcase

end

62

end

endmodule

Test bench

`timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 20:05:26 03/22/2025

// Design Name: vm1

// Module Name: F:/backppp/BACKP/vendingmachine1/tb_vm1.v

// Project Name: vendingmachine1

// Target Device:

// Tool versions:

// Description:

//

// Verilog Test Fixture created by ISE for module: vm1

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module tb_vm1;

 // Inputs

 reg clk;

 reg rst;

 reg [1:0] coin;

 reg [2:0] item;

63

 // Outputs

 wire candy;

 wire cake;

 wire cooldrink;

 wire [3:0] change;

 // Instantiate the Unit Under Test (UUT)

 vm1 uut (

 .candy(candy),

 .cake(cake),

 .cooldrink(cooldrink),

 .change(change),

 .clk(clk),

 .rst(rst),

 .coin(coin),

 .item(item)

);

 initial begin

 // Initialize Inputs

 clk = 1;

 rst = 1;

 coin = 2'b00;

 item = 3'b000;

 //candy

 #20;

 rst = 0;

 item = 3'b001;

 coin = 2'b00;

 #20;

 coin=2'b01;

64

 #20;

 coin=2'b10;

 #20;

 coin=2'b11;

 //................................cake

 #20;

 item = 3'b010;

 coin = 2'b00;

 #20;

 coin=2'b01;

 #20;

 coin=2'b10;

 #20;

 coin=2'b11;

 //..................................cooldrink

 #20;

 item = 3'b011;

 coin = 2'b00;

 #20;

 coin=2'b01;

 #20;

 coin=2'b10;

 #20;

 coin=2'b11;

 //.......................................no item

 #20;

 item = 3'b000;

 coin = 2'b00;

 #20;

 coin=2'b01;

 #20;

 coin=2'b10;

65

 #20;

 coin=2'b11;

 //..................................

 #20;

 // Add stimulus here

 end

 always #10 clk=~clk;

endmodule

